3.144 \(\int x^2 \tan ^2(a+i \log (x)) \, dx\)

Optimal. Leaf size=62 \[ -\frac{2 e^{2 i a} x^3}{x^2+e^{2 i a}}+6 e^{2 i a} x-6 e^{3 i a} \tan ^{-1}\left (e^{-i a} x\right )-\frac{x^3}{3} \]

[Out]

6*E^((2*I)*a)*x - x^3/3 - (2*E^((2*I)*a)*x^3)/(E^((2*I)*a) + x^2) - 6*E^((3*I)*a)*ArcTan[x/E^(I*a)]

________________________________________________________________________________________

Rubi [F]  time = 0.0498105, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0., Rules used = {} \[ \int x^2 \tan ^2(a+i \log (x)) \, dx \]

Verification is Not applicable to the result.

[In]

Int[x^2*Tan[a + I*Log[x]]^2,x]

[Out]

Defer[Int][x^2*Tan[a + I*Log[x]]^2, x]

Rubi steps

\begin{align*} \int x^2 \tan ^2(a+i \log (x)) \, dx &=\int x^2 \tan ^2(a+i \log (x)) \, dx\\ \end{align*}

Mathematica [A]  time = 0.119622, size = 100, normalized size = 1.61 \[ \frac{2 x (\cos (3 a)+i \sin (3 a))}{\left (x^2+1\right ) \cos (a)-i \left (x^2-1\right ) \sin (a)}+4 i x \sin (2 a)+4 x \cos (2 a)-6 \cos (3 a) \tan ^{-1}(x (\cos (a)-i \sin (a)))-6 i \sin (3 a) \tan ^{-1}(x (\cos (a)-i \sin (a)))-\frac{x^3}{3} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2*Tan[a + I*Log[x]]^2,x]

[Out]

-x^3/3 + 4*x*Cos[2*a] - 6*ArcTan[x*(Cos[a] - I*Sin[a])]*Cos[3*a] + (4*I)*x*Sin[2*a] + (2*x*(Cos[3*a] + I*Sin[3
*a]))/((1 + x^2)*Cos[a] - I*(-1 + x^2)*Sin[a]) - (6*I)*ArcTan[x*(Cos[a] - I*Sin[a])]*Sin[3*a]

________________________________________________________________________________________

Maple [F]  time = 0.078, size = 0, normalized size = 0. \begin{align*} \int{x}^{2} \left ( \tan \left ( a+i\ln \left ( x \right ) \right ) \right ) ^{2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*tan(a+I*ln(x))^2,x)

[Out]

int(x^2*tan(a+I*ln(x))^2,x)

________________________________________________________________________________________

Maxima [B]  time = 1.64488, size = 363, normalized size = 5.85 \begin{align*} -\frac{2 \, x^{5} - x^{3}{\left (22 \, \cos \left (2 \, a\right ) + 22 i \, \sin \left (2 \, a\right )\right )} - x{\left (36 \, \cos \left (4 \, a\right ) + 36 i \, \sin \left (4 \, a\right )\right )} -{\left (x^{2}{\left (18 \, \cos \left (3 \, a\right ) + 18 i \, \sin \left (3 \, a\right )\right )} +{\left (18 \, \cos \left (2 \, a\right ) + 18 i \, \sin \left (2 \, a\right )\right )} \cos \left (3 \, a\right ) - 18 \,{\left (-i \, \cos \left (2 \, a\right ) + \sin \left (2 \, a\right )\right )} \sin \left (3 \, a\right )\right )} \arctan \left (\frac{2 \, x \cos \left (a\right )}{x^{2} + \cos \left (a\right )^{2} - 2 \, x \sin \left (a\right ) + \sin \left (a\right )^{2}}, \frac{x^{2} - \cos \left (a\right )^{2} - \sin \left (a\right )^{2}}{x^{2} + \cos \left (a\right )^{2} - 2 \, x \sin \left (a\right ) + \sin \left (a\right )^{2}}\right ) +{\left (9 \, x^{2}{\left (-i \, \cos \left (3 \, a\right ) + \sin \left (3 \, a\right )\right )} + 9 \,{\left (-i \, \cos \left (2 \, a\right ) + \sin \left (2 \, a\right )\right )} \cos \left (3 \, a\right ) +{\left (9 \, \cos \left (2 \, a\right ) + 9 i \, \sin \left (2 \, a\right )\right )} \sin \left (3 \, a\right )\right )} \log \left (\frac{x^{2} + \cos \left (a\right )^{2} + 2 \, x \sin \left (a\right ) + \sin \left (a\right )^{2}}{x^{2} + \cos \left (a\right )^{2} - 2 \, x \sin \left (a\right ) + \sin \left (a\right )^{2}}\right )}{6 \, x^{2} + 6 \, \cos \left (2 \, a\right ) + 6 i \, \sin \left (2 \, a\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*tan(a+I*log(x))^2,x, algorithm="maxima")

[Out]

-(2*x^5 - x^3*(22*cos(2*a) + 22*I*sin(2*a)) - x*(36*cos(4*a) + 36*I*sin(4*a)) - (x^2*(18*cos(3*a) + 18*I*sin(3
*a)) + (18*cos(2*a) + 18*I*sin(2*a))*cos(3*a) - 18*(-I*cos(2*a) + sin(2*a))*sin(3*a))*arctan2(2*x*cos(a)/(x^2
+ cos(a)^2 - 2*x*sin(a) + sin(a)^2), (x^2 - cos(a)^2 - sin(a)^2)/(x^2 + cos(a)^2 - 2*x*sin(a) + sin(a)^2)) + (
9*x^2*(-I*cos(3*a) + sin(3*a)) + 9*(-I*cos(2*a) + sin(2*a))*cos(3*a) + (9*cos(2*a) + 9*I*sin(2*a))*sin(3*a))*l
og((x^2 + cos(a)^2 + 2*x*sin(a) + sin(a)^2)/(x^2 + cos(a)^2 - 2*x*sin(a) + sin(a)^2)))/(6*x^2 + 6*cos(2*a) + 6
*I*sin(2*a))

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{2 \, x^{3} +{\left (e^{\left (2 i \, a - 2 \, \log \left (x\right )\right )} + 1\right )}{\rm integral}\left (-\frac{x^{2} e^{\left (2 i \, a - 2 \, \log \left (x\right )\right )} + 7 \, x^{2}}{e^{\left (2 i \, a - 2 \, \log \left (x\right )\right )} + 1}, x\right )}{e^{\left (2 i \, a - 2 \, \log \left (x\right )\right )} + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*tan(a+I*log(x))^2,x, algorithm="fricas")

[Out]

(2*x^3 + (e^(2*I*a - 2*log(x)) + 1)*integral(-(x^2*e^(2*I*a - 2*log(x)) + 7*x^2)/(e^(2*I*a - 2*log(x)) + 1), x
))/(e^(2*I*a - 2*log(x)) + 1)

________________________________________________________________________________________

Sympy [A]  time = 0.655233, size = 66, normalized size = 1.06 \begin{align*} - \frac{x^{3}}{3} + 4 x e^{2 i a} + \frac{2 x e^{4 i a}}{x^{2} + e^{2 i a}} - 3 \left (- i \log{\left (x - i e^{i a} \right )} + i \log{\left (x + i e^{i a} \right )}\right ) e^{3 i a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*tan(a+I*ln(x))**2,x)

[Out]

-x**3/3 + 4*x*exp(2*I*a) + 2*x*exp(4*I*a)/(x**2 + exp(2*I*a)) - 3*(-I*log(x - I*exp(I*a)) + I*log(x + I*exp(I*
a)))*exp(3*I*a)

________________________________________________________________________________________

Giac [B]  time = 1.24315, size = 190, normalized size = 3.06 \begin{align*} -\frac{x^{5}}{3 \,{\left (x^{2} + \frac{e^{\left (4 i \, a\right )}}{x^{2}} + 2 \, e^{\left (2 i \, a\right )}\right )}} + \frac{10 \, x^{3} e^{\left (2 i \, a\right )}}{3 \,{\left (x^{2} + \frac{e^{\left (4 i \, a\right )}}{x^{2}} + 2 \, e^{\left (2 i \, a\right )}\right )}} - 6 \, \arctan \left (x e^{\left (-i \, a\right )}\right ) e^{\left (3 i \, a\right )} + \frac{35 \, x e^{\left (4 i \, a\right )}}{3 \,{\left (x^{2} + \frac{e^{\left (4 i \, a\right )}}{x^{2}} + 2 \, e^{\left (2 i \, a\right )}\right )}} + \frac{2 \, x e^{\left (4 i \, a\right )}}{x^{2} + e^{\left (2 i \, a\right )}} + \frac{8 \, e^{\left (6 i \, a\right )}}{{\left (x^{2} + \frac{e^{\left (4 i \, a\right )}}{x^{2}} + 2 \, e^{\left (2 i \, a\right )}\right )} x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*tan(a+I*log(x))^2,x, algorithm="giac")

[Out]

-1/3*x^5/(x^2 + e^(4*I*a)/x^2 + 2*e^(2*I*a)) + 10/3*x^3*e^(2*I*a)/(x^2 + e^(4*I*a)/x^2 + 2*e^(2*I*a)) - 6*arct
an(x*e^(-I*a))*e^(3*I*a) + 35/3*x*e^(4*I*a)/(x^2 + e^(4*I*a)/x^2 + 2*e^(2*I*a)) + 2*x*e^(4*I*a)/(x^2 + e^(2*I*
a)) + 8*e^(6*I*a)/((x^2 + e^(4*I*a)/x^2 + 2*e^(2*I*a))*x)